Persistent storage capability impairs decision making in a biophysical network model
نویسندگان
چکیده
Two long-standing questions in neuroscience concern the mechanisms underlying our abilities to make decisions and to store goal-relevant information in memory for seconds at a time. Recent experimental and theoretical advances suggest that NMDA receptors at intrinsic cortical synapses play an important role in both these functions. The long NMDA time constant is suggested to support persistent mnemonic activity by maintaining excitatory drive after the removal of a stimulus and to enable the slow integration of afferent information in the service of decisions. These findings have led to the hypothesis that the local circuit mechanisms underlying decisions must also furnish persistent storage of information. We use a local circuit cortical model of spiking neurons to test this hypothesis, controlling intrinsic drive by scaling NMDA conductance strength. Our simulations provide further evidence that persistent storage and decision making are supported by common mechanisms, but under biophysically realistic parameters, our model demonstrates that the processing requirements of persistent storage and decision making may be incompatible at the local circuit level. Parameters supporting persistent storage lead to strong dynamics that are at odds with slow integration, whereas weaker dynamics furnish the speed-accuracy trade-off common to psychometric data and decision theory.
منابع مشابه
Application of multi-criteria decision making to estimate the potential of flooding
Integrating a geographic information system and multi-criteria decision making methods have been lead to provide spatial multi-criteria decision making methods. In this study, the spatial potential of flooding was determined based on analytic network process and analytic hierarchy process. At first, six factors of flooding were determined as criteria. The criteria were the slope, hill-slope asp...
متن کاملA Recurrent Neural Network to Identify Efficient Decision Making Units in Data Envelopment Analysis
In this paper we present a recurrent neural network model to recognize efficient Decision Making Units(DMUs) in Data Envelopment Analysis(DEA). The proposed neural network model is derived from an unconstrained minimization problem. In theoretical aspect, it is shown that the proposed neural network is stable in the sense of lyapunov and globally convergent. The proposed model has a single-laye...
متن کاملAuthorization models for secure information sharing: a survey and research agenda
This article presents a survey of authorization models and considers their 'fitness-for-purpose' in facilitating information sharing. Network-supported information sharing is an important technical capability that underpins collaboration in support of dynamic and unpredictable activities such as emergency response, national security, infrastructure protection, supply chain integration and emerg...
متن کاملComparison of Three Decision-Making Models in Differentiating Five Types of Heart Disease: A Case Study in Ghaem Sub-Specialty Hospital
Introduction: cardiovascular diseases are becoming the main cause of mortality and morbidity in most countries. This research goal was to predict the types of heart diseases for more accurate diagnosis by data mining and neural network technics. Method: This research was an applied-survey study and after data preprocessing, three approaches of neural network, decision making tree and Bayes simp...
متن کاملComparison of Three Decision-Making Models in Differentiating Five Types of Heart Disease: A Case Study in Ghaem Sub-Specialty Hospital
Introduction: cardiovascular diseases are becoming the main cause of mortality and morbidity in most countries. This research goal was to predict the types of heart diseases for more accurate diagnosis by data mining and neural network technics. Method: This research was an applied-survey study and after data preprocessing, three approaches of neural network, decision making tree and Bayes simp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neural networks : the official journal of the International Neural Network Society
دوره 24 10 شماره
صفحات -
تاریخ انتشار 2011